Convolutional Neural Network for Sparse Reconstruction of MR Images Interposed with Gaussian Noise

Author:

Manimala M. V. R.1ORCID,Naidu C. Dhanunjaya2,Prasad M. N. Giri1

Affiliation:

1. ECE Department, JNTUA, Ananthapuramu, Andhra Pradesh 515002, India

2. ECE Department, VNR VJIET, Hyderabad, Telangana 500090, India

Abstract

Compressive Sensing (CS) reconstructs high-quality images from very few measurements, which are far below Nyquist rate. CS proves to be very useful for acquiring high dimensional image sets like Magnetic Resonance Imaging (MRI). However, the efficiency of MR image reconstruction is affected due to slow acquisition of voluminous k-space data. To improve the quality of reconstructed image and increase the speed of the reconstruction, a novel algorithm namely Adaptive Sparse Reconstruction using Convolution Neural Network AsrCNN has been, proposed for MR Images. AsrCNN employs a CNN, which consists of four convolutional layers and one fully connected layer. The proposed algorithm reconstructs MR images with immense quality, as it is trained over a large dataset with adaptive gradient optimization. The training set consists of [Formula: see text] image patches, which is used to create the dictionary by adaptively updating the weights. Subsequently, the dictionary is employed for recovery of sparse MR images corrupted with Gaussian noise. Patch-based approach in AsrCNN enables MR images of varied sizes to be processed without resizing. Experimental results for AsrCNN show an improvement of 1–5 dB in PSNR over previous state-of-art algorithms. Training has been done on GPU using Convolutional Architecture for Fast Feature Embedding (CAFFE) framework as it reduces significant amount of time in reconstructing images.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Reference34 articles.

1. E. M. Haacke, R. W. Brown, M. R. Thompson and R. Venkatesan , Magnetic Resonance Imaging: Physical Principles and Sequence Design (John Wiley and Sons, 1999), p. 944.

2. Sparse MRI: The application of compressed sensing for rapid MR imaging

3. MR Image Reconstruction From Highly Undersampled k-Space Data by Dictionary Learning

4. Cardiac MR Imaging: State of the Technology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3