Affiliation:
1. School of Computer and Information, Hefei University of Technology, 485 Danxia Road, Hefei, Anhui 230601, P. R. China
2. School of Electronic Science and Applied Physics, Hefei University of Technology, 193 Danxia Road, Hefei, Anhui 230601, P. R. China
Abstract
The wireless network on chip WiNoC introduces wireless links in the traditional network on chip (NoC), which reduces the network diameter and enables high-throughput, low-latency data communications. In addition, if wireless nodes can dynamically request data transmission, wireless bandwidth will be more effectively utilized. In order to implement a conflict-free, adaptive bandwidth allocation strategy, a priority-based dynamic media access control mechanism has been designed. In this work, a dynamic priority calculation method has been proposed based on the packets’ transmission time and the waiting time in the queue. Then, a priority calculating unit is designed to calculate the dynamic priority of the packet. Finally, the central control unit designed obtains the dynamic priority of the packets, and dynamically authorizes the use rights of the wireless medium according to the priority of the data packet. Simulation experiments show that the media access control mechanism proposed in this paper has significant improvements in throughput, delay, and power consumption performances compared with other mechanisms [S.Deb et al., Wireless NoC as interconnection backbone for multicore chips: promises and challenges, IEEE J. Emerg. Sel. Topics Circuits Syst. 2 (2012) 228–239].
Funder
National Natural Science Foundation of China
National Natural Science Foundation for Young Scholars of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献