Research and Application of High-Speed and Adjustable Synchronous Data Transfer System Based on USB 3.0 Peripheral Controller

Author:

Huang Junze12ORCID,Wang Yueming12

Affiliation:

1. The Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, P. R. China

2. University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Abstract

Since bulk transfer bandwidth of the host is unstable, the universal serial bus (USB) 3.0 hyperspectral data transfer system can only achieve a data transfer rate of about 30 MBps which is less than one-fifteenth of USB 3.0 theoretical transfer rate of 5 Gbps. For aerial hyperspectral imager, data transfer system is required to meet different frame rates of detector for different speed-to-height ratios. In this paper, we propose a high-speed and adjustable synchronous transfer system. The USB 3.0 peripheral controller uses synchronous first in first out (FIFO) and automatic direct memory access (DMA) to achieve the highest data transfer bandwidth. The USB acquisition software collects a data block in every fixed time interval. The size in bytes of every data block must be an integer multiple of the maximum data packet payload size, which is a necessary condition for using automatic DMA and bulk transfers. The data transfer rate of the system could be adjusted by directly changing the data block size and acquisition time interval. The experimental results show that the synchronous transfer mechanism could facilitate the 100-MBps error-free and high data transfer bandwidth application on a hyperspectral data processing system.

Funder

China High Resolution Earth Observation Project

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. USB 3.0 Based Heterogeneous Data High-Speed Transfer Subsystem;2023 International Ural Conference on Electrical Power Engineering (UralCon);2023-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3