Modified Dual Mode Transmission Gate Diffusion Input Logic for Improving Energy Efficiency

Author:

Yadav Neetika12,Pandey Neeta1ORCID,Nand Deva1

Affiliation:

1. Department of Electronics and Communication Engineering, Delhi Technological University, Delhi 110042, India

2. Amity Institute of Space Science and Technology, Amity University, Noida 201303, India

Abstract

This paper presents a modified energy-efficient Dual Mode Transmission Gate Diffusion Input (DMTGDI) design and is termed as M-DMTGDI. A contention issue in dynamic mode operation of existing DMTGDI design and DMPL design is identified and illustrated through mathematical formulation and simulations. To resolve this concern, the pre-charge/pre-discharge transistor in existing DMTGDI design is replaced by dual mode inverter in the proposal. The functional verification and performance comparison of NAND, NOR, XOR gates and 1-bit full adder based on proposed M-DMTGDI is carried out using 90 nm BSIM4 model card for bulk CMOS using Symica DE tool. The performance of the circuits is evaluated in terms of power, delay and Power Delay Product (PDP) in both static and dynamic modes. The variation of PDP with the ratio of the time the circuit is designed to run in dynamic mode against static mode is also investigated to analyze the energy efficiency of the M-DMTGDI design. The proposed approach offers maximum PDP reduction of 33.52%, 99.39% and 96.61% for 2-input gates as compared to their footed DML, DMPL and DMTGDI counterparts, respectively. The reduction in PDP is quite significant in 1-bit full adder circuit where the corresponding values are 94.18%, 99.41% and 99.79%, respectively.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Media Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3