Effective Metaheuristic Algorithms for Bag-of-Tasks Scheduling Problems Under Budget Constraints on Hybrid Clouds

Author:

Ma Linhua1,Xu Chunshan2,Ma Haoyang3,Li Yujie1,Wang Jiali1,Sun Jin1

Affiliation:

1. School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, P. R. China

2. Yijiahe Technology Co. Ltd., 57 Andemen Street Building #1, Nanjing 210012, P. R. China

3. School of Computer Science, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210013, P. R. China

Abstract

Cloud computing is an ideal platform for executing bag-of-task (BoT) applications due to its capability of delivering high-quality and pay-per-use computing services. This paper presents a family of genetic algorithm (GA)-based metaheuristics for scheduling the tasks of data-intensive BoT applications on hybrid clouds. The scheduling objective is to minimize the flowtime of BoT applications under a specified budget constraint. We take into account the impact of communication time and communication cost to formulate the optimization model for the data-intensive BoT scheduling problem. By using a task sequence to represent the scheduling solution, the proposed algorithms start with using a low-complexity strategy to generate an initial solution. The generated initial solution is identified as the best chromosome in the initial population of GA framework. We improve the standard crossover operator in GA’s evolutionary procedure by incorporating a probabilistic model. In addition, we design an efficient task dispatching method to evaluate the scheduling quality of each chromosome. Built upon the improved crossover scheme and task dispatching method, the proposed metaheuristic algorithms employ three crossover operators to solve the BoT scheduling problem considered in this work. Extensive experiments are performed to verify the performance of the proposed algorithms in scheduling data-intensive BoT applications.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Nanjing Key Technologies

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3