Ant Colony Optimization with Levy-Based Unequal Clustering and Routing (ACO-UCR) Technique for Wireless Sensor Networks

Author:

Anil Kumar N.1,Sukhi Y.2,Preetha M.3,Sivakumar K.4

Affiliation:

1. Department of Electrical and Electronics Engineering, R.M.K. Engineering College, Anna University, Chennai, Tamil Nadu 601206, India

2. Department of Electrical and Electronics Engineering, R.M.K. Engineering College, Kavaraipettai, Thiruvallur, Tamil Nadu 601 206, India

3. Department of Computer Science and Engineering, Prince Shri Venkateshwara Padmavathy Engineering, College, Chennai, Tamil Nadu 600 127, India

4. Department of Mechanical Engineering, P.T. Lee Chengalvaraya Naicker, College of Engineering and Technology, Kancheepuram, Tamil Nadu 631 502, India

Abstract

Wireless Sensor Networks (WSN) became a novel technology for ubiquitous livelihood and still remains a hot research topic because of its applicability in diverse domains. Energy efficiency treated as a crucial factor lies in the designing of WSN. Clustering is commonly applied to increase the energy efficiency and reduce the energy utilization. The proper choice of cluster heads (CHs) and cluster sizes is important in a cluster-based WSN. The CHs which are placed closer to base station (BS) are affected by the hot spot issue and it exhausts its energy faster than the usual way. For addressing this issue, a new unequal clustering and routing technique using ant colony optimization (ACO) algorithm is presented. Initially, CHs are chosen and clusters are constructed based on several variables. Next, the ACO algorithm with levy distribution is applied for the selection of optimal paths between two nodes in the network. A comprehensive validation set takes place under diverse situations under the position of BS. The experimental outcome verified the superiority of the presented model under several validation parameters.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3