Design and Simulation of a Novel 16T SRAM Cell for Low Power Memory Architecture

Author:

Nagarajan P.1,Renuga M.2,Manikandan A.3,Dhanasekaran S.4

Affiliation:

1. Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Vadapalani, Chennai 600026, Tamilnadu, India

2. Department of Electronics and Communication Engineering, Anjalai Ammal Mahalingam Engineering College, Kovilvenni 614403, Tamilnadu, India

3. Department of Electronics and Communication Engineering, SSM Institute of Engineering and Technology, Dindugal 624002, Tamilnadu, India

4. Department of Electronics and Communication Engineering, Sri Eshwar College of Engineering, Coimbatore 641202, Tamilnadu, India

Abstract

Static random access memory (SRAM) is a sort of RAM where information is not permanently stored and does not require routine updating. To reduce leakage power without sacrificing performance, a variety of approaches have been applied to SRAM cells. In this study, we suggest a new 16T SRAM design that can function in active, park, standby, or hold modes. A fully static mode of operation for SRAM is made possible by the 16T SRAM structure, which also enhances write margin (WM) and removes charging conflict between devices during read and write operations. The key objectives of the suggested architecture are to retain logic state in park mode while maintaining stability and reducing standby time in active mode, as well as to reduce leakage current in standby mode. This is done by removing feedback from the back-to-back inverters during write operations via the data-dependent supply block. This makes it possible for the suggested bitcell to considerably increase the WM. A novel SRAM cell with 16 transistors is created with subthreshold operation and enhanced data stability. By using an equalized bit line technique to avoid leakage due to enhanced data pattern and RBL detection, the suggested single-ended SRAM cell with dynamic feedback control lowers the static noise margin for ultra-low power transfer. A sleep transistor is incorporated into the architecture to save power consumption when the system is in standby mode due to inefficient voltage transmission. Tanner EDA tool V.14.1 on 45-nm CMOS was used for design and simulation. The outcomes demonstrate a considerable decrease in no-load current and power loss.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3