AFBV: A High-Performance Network Flow Classification Method for Multi-Dimensional Fields and FPGA Implementation

Author:

Zheng Ling1ORCID,Qiu Zhiliang1,Wang Weina1,Pan Weitao1ORCID,Sun Shiyong2,Gao Ya3

Affiliation:

1. State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an, Shaanxi 710071, P. R. China

2. Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory, The 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang, Hebei 050081, P. R. China

3. School of Internet of Things Technology, Wuxi Institute of Technology, Wuxi, Jiangsu 214121, P. R. China

Abstract

Network flow classification is a key function in high-speed switches and routers. It directly determines the performance of network devices. With the development of the Internet and various kinds of applications, the flow classification needs to support multi-dimensional fields, large rule sets, and sustain a high throughput. Software-based classification cannot meet the performance requirement as high as 100 Gbps. FPGA-based flow classification methods can achieve a very high throughput. However, the range matching is still challenging. For this, this paper proposes a range supported bit vector (RSBV) method. First, the characteristic of range matching is analyzed, then the rules are pre-encoded and stored in memory. Second, the fields of an input packet header are used as addresses to read the memory, and the result of range matching is derived through pipelined Boolean operations. On this basis, bit vector for any types of fields (AFBV) is further proposed, which supports the flow classification for multi-dimensional fields efficiently, including exact matching, longest prefix matching, range matching, and arbitrary wildcard matching. The proposed methods are implemented in FPGA platform. Through a two-dimensional pipeline architecture, the AFBV can operate at a high clock frequency and can achieve a processing speed of more than 100 Gbps. Simulation results show that for a rule set of 512-bit width and 1[Formula: see text]k rules, the AFBV can achieve a throughput of 520 million packets per second (MPPS). The performance is improved by 44% compared with FSBV and 30% compared with Stride BV. The power consumption is reduced by about 43% compared with TCAM solution.

Funder

Project of Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3