Hierarchical Request-Size-Aware Flash Translation Layer Based on Page-Level Mapping

Author:

Yeo Dong Bin1,Paik Joon-Yong1,Chung Tae-Sun1ORCID

Affiliation:

1. Department of Computer Engineering, Ajou University, Worldcup-ro 206, Yeongtong-gu, Suwon 16499, Republic of Korea

Abstract

Owing to the increasing Internet population, there has been an explosion in the amount of digital data generated and also an increase in data complexity. This trend is called big data paradigm. As the Internet of Things (IoT) takes center stage, the growth of data will continue to increase. Therefore, the demand for mass storage devices that have high access speed is increasing. Industry has been paying attention to flash memories that can process large amounts of data at high speed. It will be a good alternative for storing and processing ever-increasing amounts of data because of low power consumption, high shock resistance, portability and fast access speed. However, the write speed is about 10–20 times slower than the read speed in flash memory. In addition, write operations are not allowed to be performed with in-place updates. Garbage collection mechanism is proposed in order to solve the problem incurred by the not-in-place update property of write operations. However, garbage collection mechanism unavoidably causes overhead of additional internal operations, which leads to performance degradation. In this paper, to prevent performance degradation caused by garbage collection, we propose a request-size-aware flash translation layer (RSaFTL) and a hierarchical request-size-aware flash translation layer (HiRSaFTL). They are designed based on page-level address translation. In RSaFTL and HiRSaFTL, page-sized data with high temporal locality cluster into a special area called active blocks by exploiting the property of realistic traces. As a result of the experiments, RSaFTL and HiRSaFTL reduce the number of pages migrated during garbage collections by up to 17.9% and 21.3%, respectively, compared with pure page-level flash transition layer.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Reference25 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research and Design of Nand Flash Array From Host to Flash Translation Layer;IEEE Access;2023

2. Dual Locality-Based Flash Translation Layer for NAND Flash-Based Consumer Electronics;IEEE Transactions on Consumer Electronics;2022-08

3. SmartHeating: On the Performance and Lifetime Improvement of Self-Healing SSDs;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2021-01

4. A Group-Based Buffer Management for SSD;Journal of Circuits, Systems and Computers;2019-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3