Removal of Redundant Information via Discrete Representation for Monocular Depth Estimation

Author:

Du Hao1,Liu Xinzhi1,Cheng Guoan1,Matsune Ai1,Xu Liangfeng1,Zhan Shu1ORCID

Affiliation:

1. School of Computer and Information, Hefei University of Technology, Hefei, 230601, P. R. China

Abstract

Monocular depth estimation aims at inferring three-dimensional (3D) cues from a single RGB image. Although existing methods have achieved a certain degree of success, the impact of redundant information has rarely been studied. We propose to improve estimation accuracy by implicitly eliminating redundant information. To this end, we creatively apply discrete representation to monocular depth estimation. By mapping continuous variables into the corresponding learning-based discrete latent space, a hierarchical multi-scale latent map is acquired as the decoder input. Removing redundant information can enhance prediction performance by making the depth estimator balance the local and global. Furthermore, to fully take advantage of the discrete representation, a lightweight fusion mechanism is introduced to aggregate information in multi-scale feature maps.Experiments on NYU Depth V2 dataset demonstrate that our network is competitive with the state of the arts.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3