Deep Learning-Based Image Geolocation for Travel Recommendation via Multi-Task Learning

Author:

Gu Fangfang1,Jiang Keshen1,Hu Xiaoyi2,Yang Jie2

Affiliation:

1. College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China

2. College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China

Abstract

Localizing images by visual information is a very challenging task in image-based travel recommendations. Travelers take a large number of pictures every day and share them on social networks (Facebook, Sina Weibo, Yelp, etc.). Many of these images are associated with the location where they are taken. But for images that do not associate with geographic location information, how to estimate where they are taken? With the rapid development of social media, the increasing number of shared geographic-labeled images brings an opportunity to address this problem. Using geographic-labeled images to estimate the location of unlabeled images is a popular approach. In this paper, we propose an image geographic location estimation model via multi-task learning (GLML). It combines the classification task and retrieval task to calculate the similarity between the query image and dataset images. Additionally, it fuses multi-global features through multiple global pooling techniques to enhance feature extraction. Each part of the proposed GLML model is flexible and extensible. Experiments on seven public datasets show the effectiveness of the proposed model.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on System Development of Spatial Clustering in Tourism Recommendation;Applied Mathematics and Nonlinear Sciences;2024-01-01

2. Predicting Urban Tourism Flow with Tourism Digital Footprints Based on Deep Learning;KSII Transactions on Internet and Information Systems;2023-04-30

3. Caching Hybrid Rotation: A Memory Access Optimization Method for CNN on FPGA;Journal of Circuits, Systems and Computers;2023-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3