PRIORITY-DRIVEN AREA OPTIMIZATION IN HIGH-LEVEL SYNTHESIS

Author:

SAAD MARIA ABI1,OUAISS IYAD1

Affiliation:

1. Department of Computer and Electrical Engineering, Lebanese American University, Byblos, P. O. Box 36, Lebanon

Abstract

One of the major enhancements that can be made to the high-level synthesis (HLS) process is reducing the overall area of a design in order to either decrease the manufacturing costs or to introduce more functionality to the circuit. Optimizing the area of the datapath is considered a primary field of research in HLS. This work proposes an approach to reduce the area in field programmable gate array (FPGA) by simultaneously tackling the three central tasks of HLS. Scheduling, allocation, and binding are performed and the optimal solution based on area reduction is obtained by using simulated annealing with a priority function. The aim of the priority function is to guide the simulated annealing process into finding the best solution while at the same time incurring the least possible execution time. In order to achieve better results than the initial solution, rescheduling, swapping operations between functional units, swapping variables between registers, and swapping inputs to functional units are considered in the annealing process. A cost function is devised to evaluate a potential move's success or failure. The simulation environment "Eridanus" has been developed in order to support implementation and testing. Several benchmarks were tested and the numerical results consisting of the execution time along with the best solution were recorded to illustrate the performance of the proposed technique. Area reduction was obtained compared to the conventional HLS flow; furthermore, an average substantial reduction in design space exploration time was obtained compared to non-priority based area optimization techniques.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Reference12 articles.

1. G. De Micheli, Synthesis and Optimization of Digital Circuits (McGraw-Hill, NY, 1994) pp. 141–163.

2. Optimization by Simulated Annealing

3. Simultaneous scheduling, allocation and binding in high level synthesis

4. High — Level Synthesis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3