Ultrasound Kidney Images with IKNN-Dependent FPGA Abnormality Classification

Author:

Vinoth R.1ORCID,Sasireka R.2

Affiliation:

1. Department of Electronics and Communication Engineering, P.S.R. Engineering College, Sivakasi, Tamil Nadu, India

2. Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India

Abstract

Ultrasound imaging is commonly used to diagnose internal anomalies. Imaging for abnormality detection is a challenging process in today’s world. Even though there is an advancement in technology, tele-radiographers face difficulty in the accurate diagnosis of abnormalities. In order to resolve this issue, tele-radiology has paved a new way for doctors around the world to access the Internet to share the radiological images from one location to another. But frequent online access is one of the bottleneck issues. In order to overcome this drawback, Computer Assisted Diagnosis (CAD) is preferred in this proposed study and it uses VIRTEX-6 FPGA to clearly identify abnormality in the platform and also manual control is minimized in this condition. The proposed algorithm includes five steps: pre-processing, segmentation, feature extraction, selection and classification. The classification is performed using the Iterative K-Nearest Neighbor (IKNN) classifier based on the selected features. Unlike popular KNN, the proposed IKNN algorithm performs the similarity measurement on selective neighbors for a number of times where the number of neighbors has been dynamically selected at each iteration. Also, at each iteration, the method would select a subset of features in a random way. For the features selected and with the neighbors selected, the method computes the similarity value of Hist-sim which is being measured according to the features selected from the histogram features where the method computes the Haralick similarity with the features selected from the Haralick features. Using the features selected, the method computes the value of cumulative class drive similarity (CCDS). At each iteration the class with maximum similarity is selected and finally, the class being selected for the most number of times is selected as a result of classification. This improves the performance of classification. While comparing with the existing algorithms such as Support Vector Machine (SVM) with the linear, Radial Basis Function (RBF) and polynomial kernels, greater accuracy is achieved via IKNN classification. The specificity is found to be 95, 80 and 75 for normal, cystic and stone kidneys.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Media Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3