Monaural Musical Octave Sound Separation Using Relaxed Extended Common Amplitude Modulation

Author:

Gong Yukai1,Dai Longquan1ORCID

Affiliation:

1. School of Computer Science and Engineering, Nanjing University of Science and Technology, Xiaolinwei 200, Xuanwu District, Nanjing 210094, P. R. China

Abstract

Monaural music sound separation isolates individual instrument sources from a mono-channel polyphonic mixture. The primary challenge is to separate the source partials overlapped in time-frequency regions, especially for the full overlapping cases that at least one source does not have any nonoverlapping partial. Due to the lack of effective methods to separate the sources with full overlapping partials, this paper put forward a relaxed extended common amplitude modulation (RECAM) approach to deal with the octave sound separation, one of the most difficult cases. Our strategy uses a multi-band co-processing way for each short-time partial wave segment. Extensive experiments are conducted on octave mixture samples drawn from the Iowa University Musical Instrument Database. Results confirm that our RECAM achieves the best separation performance. For nonvibrato and vibrato mixtures, the average improvement of RECAM in each measure exceeds [Formula: see text]dB and [Formula: see text]dB, respectively.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3