Multi-Scale Correlation for Deep Homography Estimation

Author:

Ke Nan1,Shang Zhaowei1,Zhao Lingzhi2,Wang Yingxin3,Zhou Mingling1ORCID

Affiliation:

1. School of Computer Science, Chongqing University, Chongqing 400044, P. R. China

2. Group Technology Innovation Center Business Empowerment Department, Shenzhen 519000, P. R. China

3. National Engineering Laboratory for Dangerous Articles and Explosives Detection Technologies, Department of Engineering Physics, Tsinghua University, Beijing 100084, P. R. China

Abstract

In this paper, we propose a novel multi-scale correlation network (MSCNet) for homography estimation from coarse to fine. First, we extract multi-scale features through a siamese network to generate global and local correlations from feature maps of different scales. Second, we use a group dilated deconvolution block to capture global mapping by increasing the receptive fields in terms of different levels. Third, we employ the channel and spatial attention mechanism to achieve local refinement for small displacements. Finally, we adopt a knowledge distillation strategy to lightweight our model while maintaining relatively high estimation performance. Experimental results on Microsoft Common Objects in Context (MSCOCO) dataset show that our proposed MSCNet outperforms the state-of-the-art approaches in terms of accuracy and parameter count.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3