Maximally Flat and Least-Square Co-Design of Variable Fractional Delay Filters for Wideband Software-Defined Radio

Author:

Li Haolin1ORCID,Van Kerrebrouck Joris1,Bauwelinck Johan1,Demeester Piet1,Torfs Guy1

Affiliation:

1. Department of Information Technology, IDLab, Ghent University-imec, Ghent 9000, Belgium

Abstract

This paper describes improvements in a Farrow-structured variable fractional delay (FD) Lagrange filter for all-pass FD interpolation. The main idea is to integrate the truncated sinc into the Farrow structure of a Lagrange filter, in order that a superior FD approximation in the least-square sense can be achieved. Its primary advantages are the lower level of mean-square-error (MSE) over the whole FD range and the reduced implementation cost. Extra design parameters are introduced for making the trade-off between MSE and maximal flatness under different design requirements. Design examples are included, illustrating an MSE reduction of [Formula: see text] compared to a classical Farrow-structured Lagrange interpolator while the implementation cost is reduced. This improved variable FD interpolation system is suitable for many applications, such as sample rate conversion, digital beamforming and timing synchronization in wideband software-defined radio (SDR) communications.

Funder

European Research Council

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Least lp-norm design of complex exponential structure variable fractional delay FIR filters;Signal Processing;2024-05

2. Optimized Design of a Variable Fractional Delay Filter With Delay Error Constraints;IEEE Transactions on Circuits and Systems II: Express Briefs;2023-08

3. Influence factor analysis of soil heavy metal Cd based on the GeoDetector;Stochastic Environmental Research and Risk Assessment;2020-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3