GPS Receivers Spoofing Detection Based on Subtractive, FCM and DBSCAN Clustering Algorithms

Author:

Sarpanah Z.1,Mosavi M. R.1ORCID,Shafiee E.2

Affiliation:

1. Department of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran

2. Department of Electrical Engineering, Shahid Sattari Aeronautical University, Tehran, Iran

Abstract

GPS receivers have a wide range of applications, but are not always secure. A spoofing attack is one source of conscious errors in which the counterfeit signal overcomes the authentic GPS signal and takes control of the receiver’s operation. Recently, GPS spoofing attack detection based on computational algorithms, such as machine learning, classification, wavelet transform and clustering, has been developing. This paper proposes multiple clustering algorithms for accurately clustering the authentic and spoofing signals, called subtractive, FCM and DBSCAN clustering. The spoofing attack is recognized using two distinct features: moving phase detector variance and norms of correlators. Spoofing and authentic signals have different patterns in the proposed features. According to the Dunn and Silhouette indexes, the validation of the results is investigated. The Dunn values for the proposed approaches are 0.8592, 0.5285 and 0.6039 for DBSCAN, FCM and subtractive clustering, respectively. Also, the DBSCAN algorithm is implemented at the RTL level because of its highest value for the Dunn index and algorithm verifiability. Using the Vivado tools, this algorithm is implemented and designed on a Xilinx Virtex 7 xc7vx690tffg1930-3 hardware device for two-dimensional data with 32-bit accuracy and 130 data points.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The exciting potential and daunting challenge of using GPS human-mobility data for epidemic modeling;Nature Computational Science;2024-06-19

2. Automatic Classification of Museum Artifacts based on Unsupervised Models;Proceedings of the 2024 7th International Conference on Software Engineering and Information Management;2024-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3