MBIST Implementation and Evaluation in FPGA Based on Low-Complexity March Algorithms

Author:

Jidin Aiman Zakwan12ORCID,Hussin Razaidi2ORCID,Lee Weng Fook3ORCID,Mispan Mohd Syafiq1ORCID

Affiliation:

1. Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer, Universiti Teknikal Malaysia Melaka, Durian Tunggal, Melaka, Malaysia

2. Faculty of Electronics Engineering and Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia

3. Emerald System Design Center, Penang, Malaysia

Abstract

March algorithms are widely used in Memory Built-In Self-Test (MBIST) on-chip memory testing, providing linear test complexities that reduce the test time and cost. However, studies show that March algorithms with complexities lower than 18N have poor coverages of faults that have emerged with the advent of the nanometer process technologies and are more relevant to nowadays memories. New March AZ1 and March AZ2 algorithms, with 13N and 14N complexities, respectively, were introduced to provide optimum coverage of those faults and to produce a shorter test than an 18N-complexity test algorithm with a lesser area overhead, thus reducing chip manufacturing costs. This paper presents the implementation and validation of MBIST controllers that applied the March AZ1 and March AZ2 algorithms in a Field-Programmable Gate Array (FPGA) device. They were implemented in the Intel Max 10 DE10-Lite FPGA Development Board. A test generator was built in FPGA, as an alternative to the external tester, to provide test vectors required in initiating the test on the memory model using the implemented MBIST. The FPGA experimental tests demonstrated that they function correctly as the expected test sequences were observed. In addition, their fault detection abilities were also validated through tests on a fault-injected memory model, which shows that the implemented March AZ1 and March AZ2 provide 80.6% and 83.3% coverage of the intended faults, respectively, which outperform any other existing 14N-complexity March algorithms.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3