EEG Signals Classification Based on Time Frequency Analysis

Author:

Ridouh Abdelhakim1,Boutana Daoud1,Bourennane Salah2

Affiliation:

1. Department of Automatic, University of Jijel, Jijel 18034, Algeria

2. Fresnel Institute, Ecole Centrale Marseille, 13397 Marseille, France

Abstract

This paper presents a method to characterize, identify and classify some pathological Electroencephalogram (EEG) signals. We use some Time Frequency Distributions (TFDs) to analyze its nonstationarity. The analysis is conducted by the spectrogram (SP), the Choi–Williams Distribution (CWD) and the Smoothed Pseudo Wigner Ville Distribution (SPWVD). The studies are carried on some real EEG signals collected from a known database. The estimation of the best value of parameters for each distribution is achieved using the Rényi entropy (RE). The time-frequency results have permitted to characterize some pathological EEG signals. In addition, the Rényi Marginal Entropy (RME) is used for the purpose of detecting the peak seizures and discriminates between normal and pathological EEG signals. The frequency bands are evaluated using the Marginal Frequency (MF). The EEG signal classification of two sets A and E containing normal and pathologic EEG signals, respectively, is performed using our proposed method based on energy extraction of signals from time-frequency plane. Also, the Moving Average (MA) is used as a tool to obtain better classification results. The results conducted on real-life EEG signals illustrate the effectiveness of the proposed method.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time–Frequency Analysis of Some Pathological Arabic Speech Signals;Lecture Notes in Electrical Engineering;2024

2. EEG Data reduction with Epileptic Seizure Detection based machine learning in IoMT Networks;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

3. A Novel Approach for Emotion Recognition Based on EEG Signal Using Deep Learning;Applied Sciences;2022-10-06

4. A review of MEG dynamic brain network research;Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine;2022-04-23

5. EEG Oscillatory Power and Complexity for Epileptic Seizure Detection;Applied Sciences;2022-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3