Affiliation:
1. Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
2. Department of Computer Science and Engineering, R.M.K Engineering College, Anna University, Chennai, India
Abstract
This paper proposes an integrated system neutrosophic C-means-based attribute weighting-kernel extreme learning machine (NCMAW-KELM) for medical data classification using NCM clustering and KELM. To do that, NCMAW is developed, and then combined with classification method in classification of medical data. The proposed approach contains two steps. In the first step, input attributes are weighted using NCMAW method. The purpose of the weighting method is twofold: (i) to improve the classification performance in the classification of the medical data, (ii) to transform from nonlinearly separable dataset to linearly separable dataset. Finally, KELM algorithm is used for medical data classification purpose. In KELM algorithm, four types of kernels, such as Polynomial, Sigmoid, Radial basis function and Linear, are used. The simulation result on our three datasets demonstrates that the sigmoid kernel is outperformed to ELM in most cases. From the results, NCMAW-KELM approach may be a promising method in medical data classification problem.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献