A Digital Linear-Switching Hybrid Power Amplifier for Envelope Tracking Hybrid Supply Modulators

Author:

Salimi Atefeh1,Dehghani Rasoul2,Nabavi Abdolreza3

Affiliation:

1. Department of Electrical Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

2. Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran

3. Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

A novel envelope modulator for envelope tracking RF power amplifier (PA) is presented in this paper. The proposed modulator consists of a parallel combination of analog class AB and digitally controlled hybrid PAs. The analog and digital class AB PAs are effective in both reducing the clock frequency and also static power dissipation, thus improving the efficiency of the modulator. On the other hand, lower clock frequencies result in simpler and more power-efficient digital to analog converters required in the architecture. The modulator digital block is evaluated with a 45[Formula: see text]nm CMOS technology. The overall power consumption of the digital block is around 76[Formula: see text]mW at 800[Formula: see text]MHz clock frequency. As an application, the designed digital block is incorporated in a complete envelope modulator architecture. The overall efficiency of the modulator, including the digital block power consumption, is around 80.7% at an average 32[Formula: see text]dBm output power for a 5[Formula: see text]MHz input signal.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An enhanced ultra-wideband single phase hybrid supply envelope tracking modulator for modern wireless communications;AEU - International Journal of Electronics and Communications;2022-11

2. A Highly Extended High-Efficiency Range Class-F–C Doherty Power Amplifier;Journal of Circuits, Systems and Computers;2019-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3