Improving Compression Ratios for Code-Based Test Pattern Compressions through Column-Wise Reordering Algorithms

Author:

Zhang Minghe1ORCID,Kuang Jishun1,Huang Jing1,Li Renfa1

Affiliation:

1. College of Computer Science and Electronic Engineering, Hunan University, Lushan South Road, Changsha, Hunan 410082, P. R. China

Abstract

Chip testing is an effective way to reduce the number of defective or faulty chips that reach the market. However, as large-scale test patterns need to be transmitted into a circuit under test during testing, the transmission time dominates the test application time of the chip testing. Therefore, code-based compression methods are widely used in compressing test patterns because of their capability to reduce the transmission time and save storage space significantly. Current code-based compression methods cannot fully apply the inherent characteristics of test patterns yet. To address this problem, this study proposes two-stage test pattern preprocessing algorithms, thereby improving the efficiency of the code-based compression method. First, we propose a column-wise reordering for Hadamard matrix (CRHM) algorithm, which decomposes a test set consisting of test patterns into a primary component set (PCS) and a residual component set (RCS). The PCS inherits some 1s from the original test set (OTS), and other 1s belong to the RCS. As the number of 1s contained in the RCS is less than that in the OTS, the RCS can obtain a higher code-based compression ratio. The PCS can be generated by an on-chip generator, which does not consume transmission time. Second, we propose a novel column-wise reordering for the RCS (CRRCS) algorithm. The CRRCS solves the new location of each column of the RCS one by one in the list to decrease the entropy of the RCS. The entropy denotes the shortest length of the codeword required for the symbol to be encoded. The smaller entropy value refers to a higher compression ratio. For the sorted RCS, more high-frequency symbols can be replaced by shorter codewords. Experimental results based on seven code-based compression methods show that the proposed algorithms can increase the average compression ratio by a total of 19.91%, and the highest average compression ratio reaches 85.04% for ISCAS’89 benchmark circuits.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3