A Novel Morphological Feature Extraction Approach for ECG Signal Analysis Based on Generalized Synchrosqueezing Transform, Correntropy Function and Adaptive Heuristic Framework in FPGA

Author:

Ganatra Miloni M.12ORCID,Vithalani Chandresh H.3

Affiliation:

1. Gujarat Technological University, Gujarat, India

2. Electronics & Communication Engineering Department, Indus University, Ahmedabad, Gujarat 382115, India

3. Electronics & Communication Engineering Department, Governments Engineering College, Rajkot, Gujarat 360005, India

Abstract

Nowadays, a computer-aided diagnosis system is required to monitor the cardiac patients continuously and detecting the heart diseases automatically. In this paper, a new field programmable gate array-based morphological feature extraction approach is proposed for electrocardiogram signal analysis. The proposed architecture is mainly based on the Generalized Synchrosqueezing transform but a detrended fluctuation analyzer is applied in the reconstruction stage for capturing the maximum information of QRS complexes and P-waves by eliminating a set of noisy intrinsic modes. Then, a correntropy envelope is determined from the QRS enhanced signal for localizing the QRS region accurately. Also, an adaptive heuristic framework is introduced to detect the true P-wave from the P-wave enhanced reconstructed signal by analyzing both the positive and negative amplitudes. In addition, a root mean square Error estimation-based adaptive thresholding approach is used to estimate the T-wave after removing the P-QRS complexes. The proposed architecture has been implemented on field programmable gate array using the Xilinx Vertex 7 platform. The performance of the proposed architecture is validated by performing a comparative study between the resultant performances and those attained with state-of-the-art feature descriptors, in terms of Sensitivity, accuracy, positive prediction, error rate and field programmable gate array resources estimation. The proposed sensitivity, accuracy and positive prediction are 99.84%, 99.85% and 99.86% for QRS detection approach. The proposed sensitivity, accuracy and positive prediction are 99.45%, 99.23% and 99.78% for P-wave detection approach. The proposed sensitivity, accuracy and positive prediction are 99.58%, 99.65% and 100% for T-wave detection approach. The simulation results show that the proposed architecture overtakes existing designs and minimizes hardware complexity, which proves the suitability of this approach on real-time applications of electrocardiogram signals.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Media Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3