CENTROID NEURAL NETWORK WITH WEIGHTED FEATURES

Author:

PARK DONG-CHUL1

Affiliation:

1. Intelligent Computing Research Laboratory, Department of Information Engineering, Myong Ji University, Yong In, KyungKi-do, 449-728, Republic of Korea

Abstract

A Centroid Neural Network with Weighted Features (CNN-WF) is proposed and presented in this paper. The proposed CNN-WF is based on a Centroid Neural Network (CNN), an effective clustering tool that has been successfully applied to various problems. In order to evaluate the importance of each feature in a set of data, a feature weighting concept is introduced to the Centroid Neural Network in the proposed algorithm. The weight update equations for CNN-WF are derived by applying the Lagrange multiplier procedure to the objective function constructed for CNN-WF in this paper. The use of weighted features makes it possible to assess the importance of each feature and to reject features that can be considered as noise in data. Experiments on a synthetic data set and a typical image compression problem show that the proposed CNN-WF can assess the importance of each feature and the proposed CNN-WF outperforms conventional algorithms including the Self-Organizing Map (SOM) and CNN in terms of clustering accuracy.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cluster analysis via projection onto convex sets;Intelligent Data Analysis;2024-03-11

2. Centroid competitive learning approach for clustering and mapping the social vulnerability in Morocco;International Journal of ADVANCED AND APPLIED SCIENCES;2022-09

3. Data preprocessing in predictive data mining;The Knowledge Engineering Review;2019

4. On the evolutionary optimization of k-NN by label-dependent feature weighting;Pattern Recognition Letters;2012-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3