TS Model-LMI Based Observer for Improving Active Power Filter Performance

Author:

Terán R. A. de J.1,Pérez J.1,Beristáin J. A.1

Affiliation:

1. Department of Electrical and Electronics Engineering, Technological Institute of Sonora, Av. Antonio Caso 2266, 85137, Cd. Obregón, Sonora, México

Abstract

To avoid the negative effects of using a control signal with a ripple, which is generated by the feedback of measured active power filter (APF) variables, a nonlinear observer is employed in this paper. The observer design, through the use of exact TS models and Lyapunov-based LMI conditions, is achieved. Both the APF output current and the DC voltage are estimated by the observer, and they are used in the cascade control feedback. In this way, high gains in the inner control loop are employed, giving place to a control signal without undesired harmonic components or overmodulation. This allows an APF performance improvement for compensation tasks and for reducing the undesired components injection to the mains. A simulation and experimental comparison between APF results using observer and APF results without using observer is presented. Better results are achieved for the observer version case, reducing the THD from 47.6% to 4.8% in experimental conditions, satisfying the IEEE Standard 519TM-2014. Also, load change tests are carried out, where the stability of the system is kept. Moreover, by using the observer, a DC voltage sensor was not required, reducing the number of system sensors.

Funder

National Council for Science and Technology

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Media Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Control Strategies Proposals in Grid-Connected Converters: Balancing Inverter Output Current Limitation and Power Injection;2023 IEEE 2nd Industrial Electronics Society Annual On-Line Conference (ONCON);2023-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3