Minimax Design of 2D FIR Half-Band Filters Using an Efficient Matrix-Based IRLS Algorithm
-
Published:2021-09-23
Issue:
Volume:
Page:2250054
-
ISSN:0218-1266
-
Container-title:Journal of Circuits, Systems and Computers
-
language:en
-
Short-container-title:J CIRCUIT SYST COMP
Author:
Zhang Xiaoxue1,
Zhao Ruijie1,
Liu Yu1
Affiliation:
1. School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264209, P. R. China
Abstract
This paper considers the minimax design of two-dimensional (2D) finite impulse response (FIR) half-band filters. First, the design problem is formulated in a matrix form, where the half-band constraints are expressed as a pair of matrix equations. By matrix transformations, the constrained minimax problem is transformed into an unconstrained one. Then, we propose an efficient iterative reweighted least squares (IRLS) algorithm to solve this problem. The weighted least squares (WLS) subproblems arising from the IRLS algorithm are solved using a generalized conjugate gradient (GCG) algorithm. Moreover, the GCG algorithm is guaranteed to converge in a finite number of iterations. In the proposed algorithm, the design coefficients of filters are solved in their matrix form, leading to a great saving in computations and memory space. Design examples and comparisons with existing methods are provided to demonstrate the effectiveness and efficiency of the proposed algorithm.
Funder
Shandong Provincial Natural Science Foundation of China
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Ltd
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献