Affiliation:
1. Department of Electronic and Optical Engineering, Army Engineering University, No. 97 Heping West Road, Shijiazhuang 050003, P. R. China
2. Government Representative Office in 844, No. 1 Happy South Road, Xian 710032, P. R. China
Abstract
There are some shortcomings, such as huge hardware resource consumption, functional differentiation is difficult and limited fault detection coverage, when embryonic cellular array (ECA) is used to design large-scale circuit. In this paper, the structure characteristics and communication method of multicellular organism are analyzed briefly, and a new bio-inspired ECA based on bus structure (BECA) is proposed, besides that the corresponding self-repairing strategy is designed. First, the functional decomposition has been applied in BECA, which uses bus structure to realize internal communication. BECA consists of bus and electronic tissues (ET), which can be used to realize large-scale circuit. C17 circuit in ISCAS85 circuit library is chosen as experiment subject, and experiment simulation results indicate that BECA based on bus structure is suitable for large-scale circuit, and the faults occurred in ET can be repaired effectively. In order to research BECA from the mathematical point of view, the reliability evaluation model of BECA is established, which is based on [Formula: see text]-out-of-[Formula: see text] system reliability model. In addition, the hardware resource consumption model of BECA is established by analyzing the number of metal oxide semiconductor (MOS) transistors that ECA consumed. Based on BECA reliability and hardware resource consumption evaluation model, comparative experiment is studied, and the results indicate that the proposed ECA can improve the reliability of circuit and reduce hardware resource consumption effectively. Therefore, the BECA presented will play an important role in designing large-scale digital circuit with self-repairing ability.
Funder
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture