WATT MATTERS MOST? DESIGN SPACE EXPLORATION OF HIGH-PERFORMANCE MICROPROCESSORS FOR POWER-PERFORMANCE EFFICIENCY

Author:

TRANCOSO PEDRO1

Affiliation:

1. Department of Computer Science, University of Cyprus, 75 Kallipoleos Ave., P. O. Box 20537, 1678 Nicosia, Cyprus

Abstract

Computer systems have evolved significantly in the last years leading to high-performance systems. This, however, has come with a cost of large power dissipation. As such, power-awareness has become a major factor in processor design. Therefore, it is important to have a complete understanding of the power and performance behavior of all processor components. In order to achieve this, the current work presents a comprehensive analysis of power-performance efficiency for different high-end microarchitecture configurations using three different workloads: multimedia, scientific, and database. The objectives of this work are: (1) to analyze and compare the power-performance efficiency for different workloads; (2) to present a sensitivity analysis for the microarchitecture parameters in order to identify which ones are more sensitive to changes in terms of power-performance efficiency; and (3) to propose power-performance efficient configurations for each workload. The simulation results show that the multimedia workload is the one achieving the highest efficiency but the database workload is the most sensitive to parameter changes. In addition, the results also show that the parameter sensitivity depends significantly on the workload. While the issue width and clock frequency present very high sensitivity across all workloads (approximately 100%), for the database workload, the first-level instruction cache size shows an even higher sensitivity (149%). The correct configuration of these microarchitecture parameters is essential. A careless configuration of a single parameter from a baseline setup may result in a loss of the power-performance efficiency of up to 99%. Finally, carefully tuning multiple parameters simultaneously may result in gains up to 154% over the power-performance efficiency of the baseline configuration.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3