Guided Intelligent Hyper-Heuristic Algorithm for Critical Software Application Testing Satisfying Multiple Coverage Criteria

Author:

Rani S. Alagu1,Akila C.1,Raja S. P.2

Affiliation:

1. Department of Computer Science and Engineering, Anna University Regional Campus, Tirunelveli 627007, Tamil Nadu, India

2. School of Computer Science and Engineering, Vellore Institute of Technology, Vellore - 632 014, Tamil Nadu, India

Abstract

This paper proposes a novel algorithm that combines symbolic execution and data flow testing to generate test cases satisfying multiple coverage criteria of critical software applications. The coverage criteria considered are data flow coverage as the primary criterion, software safety requirements, and equivalence partitioning as sub-criteria. The characteristics of the subjects used for the study include high-precision floating-point computation and iterative programs. The work proposes an algorithm that aids the tester in automated test data generation, satisfying multiple coverage criteria for critical software. The algorithm adapts itself and selects different heuristics based on program characteristics. The algorithm has an intelligent agent as its decision support system to accomplish this adaptability. Intelligent agent uses the knowledge base to select different low-level heuristics based on the current state of the problem instance during each generation of genetic algorithm execution. The knowledge base mimics the expert’s decision in choosing the appropriate heuristics. The algorithm outperforms by accomplishing 100% data flow coverage for all subjects. In contrast, the simple genetic algorithm, random testing and a hyper-heuristic algorithm could accomplish a maximum of 83%, 67% and 76.7%, respectively, for the subject program with high complexity. The proposed algorithm covers other criteria, namely equivalence partition coverage and software safety requirements, with fewer iterations. The results reveal that test cases generated by the proposed algorithm are also effective in fault detection, with 87.2% of mutants killed when compared to a maximum of 76.4% of mutants killed for the complex subject with test cases of other methods.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3