Accelerating Parameter Extraction of PSP MOSFET Model on SoC Platform

Author:

Rathod Amit1ORCID,Thakker Rajesh2,Prince A. Amalin3

Affiliation:

1. Electronics and Communication Department, Government Engineering College, Bhavnagar, Gujarat 364002, India

2. Government Engineering College, Rajkot, Gujarat 364002, India

3. Department of EEE, Birla Institute of Technology and Science (BITS) Pilani, Goa Campus, Sancoale, India

Abstract

In this paper, a novel approach to accelerate parameter extraction process of surface-potential-based (PSP) MOSFET model is presented for the submicron MOS transistor. To reduce the computational time, Field Programmable Gate Array (FPGA) implementation of PSP model library — SiMKit is demonstrated using Xilinx’s Zynq [Formula: see text] (Multi-processor System-on-Chip) platform. Parameter extraction is carried out using Particle Swarm Optimization (PSO) algorithm for 65[Formula: see text]nm technology nMOS devices. With the available measurement data, 32 various PSP model parameters are extracted. Experimental results validate the performance and accuracy of parameter extraction by achieving Root Mean Square Error below 10% for various current–voltage characteristics of nMOS device. 41.57% acceleration in execution time for extraction process is achieved by Zynq [Formula: see text] platform compared to the conventional computer-based software approach. In addition, various design optimization directives are explored, and their performances are compared as a part of RTL generation of SiMKit.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Features of the design of microcircuits made using deep-submicron technologies;Modeling of systems and processes;2022-12-13

2. Catalogic Systematic Literature Review of Hardware-Accelerated Neurodiagnostic Systems;Biomedical Signals Based Computer-Aided Diagnosis for Neurological Disorders;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3