Semantic Segmentation of Images Based on Multi-Feature Fusion and Convolutional Neural Networks

Author:

Wang Zhenyu1ORCID,Xiao Juan1ORCID,Zhang Shuai1ORCID,Qi Baoqiang2ORCID

Affiliation:

1. School of Mathematics and Information Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, P. R. China

2. Department of Information Engineering, Qinhuangdao Institute of Technology, Qinhuangdao 066100, Hebei, P. R. China

Abstract

Image semantic segmentation technology is one of the core research contents in the field of computer vision. With the improvement of computer performance and the continuous development of deep learning technology, researchers have more and more enthusiasm to study the actual effect and performance of image semantic segmentation. The results of deep semantic segmentation allow computers to have a more detailed and accurate understanding of images, and have a wide range of application needs in the fields of autonomous driving, intelligent security, medical imaging, remote sensing images, etc. However, the existing image semantic segmentation algorithms have the disadvantages of easy discontinuous results and insufficient prediction accuracy. In this paper, we take deep learning-based image semantic segmentation technology as the research object to explore the improvement of the image semantic segmentation algorithm and its application in road scenarios. First, this paper proposes MCU-Net method based on residual fusion and multi-scale contextual information. MCU-Net uses residual fusion module to deepen the network structure and improve the ability of U-Net to acquire deeper features. Then a top-down and bottom-up path is constructed for feature information between different levels, and the spatial and semantic information contained in shallow and deep features in the network is fully utilized by fusing features from different levels. In addition, an enhanced void space pyramid pooling module is added for feature information between the same levels, which enables the output features to have a larger range of semantic information. Second, this paper proposes the DAMCU-Net method based on attention mechanism and edge detection based on MCU-Net. DAMCU-Net extracts global contextual information by the attention mechanism optimization module, while fusing features using dense jump connections to facilitate the network to recover more spatial detail information during upsampling, and uses the FReLU activation function to improve the segmentation capability of the network for complex targets. For the edge information lost in the feature extraction process, the edge detection branch is added to supplement the feature information of the main path by feature fusion to achieve the optimization of the edge information.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3