A Compressed Model-Agnostic Meta-Learning Model Based on Pruning for Disease Diagnosis

Author:

Hu Xiangjun1,Ding Xiuxiu2,Bai Dongpeng1,Zhang Qingchen1ORCID

Affiliation:

1. School of Computer Science and Technology, Hainan University 570228, Haikou, Hainan, P. R. China

2. Pulmonary and Critical Care Medicine, Hainan General Hospital /Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P. R. China

Abstract

Meta-learning has been widely used in medical image analysis. However, it requires a large amount of storage space and computing resources to train and use neural networks, especially model-agnostic meta-learning (MAML) models, making networks difficult to deploy on embedded systems and low-power devices for smart healthcare. Aiming at this problem, we explore to compress a MAML model with pruning methods for disease diagnosis. First, for each task, we find unimportant and redundant connections in MAML for its classification, respectively. Next, we find common unimportant connections for most tasks with intersections. Finally, we prune the common unimportant connections of the initial network. We conduct some experiments to assess the proposed model by comparison with MAML on Omniglot dataset and MiniImagenet dataset. The results show that our method reduces 40% parameters of the raw models, without incurring accuracy loss, demonstrating the potential of the proposed method for disease diagnosis.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Media Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3