An Eigenvalue Approach to Detect Flows and Events in Crowd Videos

Author:

Sharif Md. Haidar1

Affiliation:

1. Computer Sciences and Engineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta 15, 71210 Ilidža, Sarajevo, Bosnia and Herzegovina

Abstract

Analysis of flows in crowd videos is a remarkable topic with practical implementations in many different areas. In this paper, we present a wide overview of this topic along with our own approach to this problem. Our approach treats the difficulty of crowd flow analysis by distinguishing single versus multiple flows in a scene. Spatiotemporal features of two consecutive frames are extracted by optical flows to create a three-dimensional tensor, which retains appearance and velocity information. Tensor’s upper left minor matrix captures intensity structure. A normalized continuous rank-increase measure for each frame is calculated by a generalized interlacing property of the eigenvalues of these matrices. In essence, measure values put through the knowledge of existing flows. Yet they do not go into effect desirably due to optical flow estimation error and some other factors. A proper set of the degree of polynomial fitting functions decodes their existence. But how can we estimate that set? Its detailed study is performed. Zero flow, single flow, multiple flows, and interesting events are detected as frame basis using thresholds on the polynomial fitting measure values. Plausible mean outputs of recall rate (88.9%), precision rate (86.7%), area under the receiver operating characteristic curve (98.9%), and accuracy (92.9%) reported from conducted experiments on PETS2009 and UMN benchmark datasets make clear and visible that our method gains high-quality results to detect flows and events in crowd videos in terms of both robustness and potency.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3