Affiliation:
1. Microelectronics Department, Electronics Research Institute, Cairo, Egypt
2. Communications Department, Electronic Engineering Faculty, Menfoia, Egypt
Abstract
In this paper, we propose a tunable CRLH ZOR based on the latest resurgent of ferroelectric materials. It is known that for most resonant structures, attainment of optimal performance requires some level of additional tuning through either mechanical means (i.e., with tuning screws) or other coupling mechanisms. Therefore, incorporation of electronic tuning into high temperature superconductor (HTS) material components without degradation of performance is very attractive. The result will be low-loss microwave components that could be fine-tuned for optimal performance, with the additional attribute of being tunable over a broadband frequency range. The dielectric properties of the ferroelectric thin film, and the thickness of the ferroelectric film, play a fundamental role in the frequency or phase tunability and the overall insertion loss of the circuit. The main driving force toward using the ferroelectric is the potential for substantial miniaturization of microwave components and systems and the potential for integration with microelectronic circuits due to the development of thin and thick film ferroelectric technology. The ZOR is designed, and simulated by the full-wave analysis software. The response shows a variation of electromagnetic characteristics with the applied electric field, ferroelectric thickness and the operating temperature.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture