NER in Cyber Threat Intelligence Domain Using Transformer with TSGL

Author:

Huang Yuhuang1,su Mang1ORCID,Xu Yuting1,Liu Tian1

Affiliation:

1. School of Computer Science and Engineering, Nanjing University of Science and Technology, No. 200, Xiaolingwei Street, Nanjing 210094, P. R. China

Abstract

In response to the continuous sophistication of cyber threat actors, it is imperative to make the best use of cyber threat intelligence converted from structured or semi-structured data and Named Entity Recognition (NER) techniques that contribute to extracting critical cyber threat intelligence. To promote the NER research in Cyber Threat Intelligence (CTI) domain, we provide a Large Dataset for NER in Cyber Threat Intelligence (LDNCTI). On the LDNCTI corpus, we investigated the feasibility of mainstream transformer-based models in CTI domain. To settle the problem of unbalanced label distribution, we introduce a transformer-based model with a Triplet Loss based on metric learning and Sorted Gradient harmonizing mechanism (TSGL). Our experimental results show that the LDNCTI well represents critical threat intelligence and that our transformer-based model with the new loss function outperforms previous schemes on the Dataset for NER in Threat Intelligence (DNRTI) and the dataset for NER in Advanced Persistent Threats (APTNER).

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault Diagnosis with Imbalanced Datasets for Sucker Rod Pumping System Based on Dynamometer Card;2023 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS);2023-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3