Stability- and Crosstalk-Based Performance of Multi- and Double-walled Mixed CNT Bundles as Interconnect for Next-Generation Technology Nodes

Author:

Dhillon Gurleen1,Sandha Karmjit Singh1

Affiliation:

1. Electronics and Communication Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab, India

Abstract

The temperature-dependent modeling technique (in the temperature range of 200–500[Formula: see text]K) for a mixed class of carbon nanotube (CNT) bundle interconnects is proposed. The equivalent single conductor (ESC) transmission line models of multi-walled carbon nanotube (MWCNT) and double-walled carbon nanotube (DWCNT) are combined to develop multiple single conductor (MSC) model of mixed CNT interconnects. Various possible arrangements of densely packed MWCNT and DWCNT bundles (MDCB) are considered to form different types of mixed CNT bundle structures (MDCB-1, MDCB-2, MDCB-3 and MDCB-4). The integrated circuit emphasis simulation is performed and the performances of these mixed CNT bundle interconnects are investigated in terms of propagation delay (with and without crosstalk), power dissipation, power-delay product (PDP). Switching times, overshoot voltages and Nyquist plots are analyzed to check the stability of these mixed CNT structures for global interconnect length for 32-nm, 22-nm and 16-nm technology nodes. It is observed that the MDCB-1 structure yields the most promising result in all aspects for interconnect applications in the near future.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3