Statement-Level Software Defect Prediction Based on Improved R-Transformer

Author:

Zhu Yulei1,Zhang Yufeng1ORCID,Chen Zhenbang2

Affiliation:

1. College of Computer Science and Electronic Engineering, Hunan University, Changsha, P. R. China

2. College of Computer, National University of Defense Technology, Changsha, P. R. China

Abstract

Engineers use software defect prediction (SDP) to locate vulnerable areas of software. Recently, statement-level SDP has attracted the attention of researchers due to its ability to localize faulty code areas. This paper proposes DP-Tramo, a new model dedicated to improving the state-of-the-art statement-level SDP. We use Clang to extract abstract syntax trees from source code and extract 32 statement-level metrics as static features for each sentence. Then we feed static features and token sequences as inputs to our improved R-Transformer to learn the syntactic and semantic features of the code. Furthermore, we use label smoothing and weighted loss to improve the performance of DP-Tramo. To evaluate DP-Tramo, we perform a 10-fold cross-validation on 119,989 C/C++ programs selected from Code4Bench. Experimental results show that DP-Tramo can classify the dataset with an average performance of 0.949, 0.602, 0.734 and 0.737 regarding the recall, precision, accuracy and F1-measure, respectively. DP-Tramo outperforms the baseline method on F1-measure by 1.2% while maintaining a high recall rate.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Media Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3