A BBN-Based Framework for Design Space Pruning of Application Specific Instruction Processors

Author:

Srinivasan V. Prasanna1,Shanthi A. P.2

Affiliation:

1. Department of Information Technology, R.M.D Engineering College, Kavaraipettai 601206, Tamil Nadu, India

2. Department of Computer Science and Engineering, College of Engineering, Anna University, Chennai 600025, Tamil Nadu, India

Abstract

During the synthesis phase of the embedded system design process, the designer has to take early decisions for selecting the optimal system components such as processors, memories, communication interfaces, etc. from the available huge design alternatives. In order to obtain the optimal design configurations from the available huge design alternatives, an efficient design space pruning technique that will ease the design space exploration (DSE) process is required. The knowledge about the target architectural parameters affecting the overall objectives of the system should be considered during the design, so that the search process for finding the optimal system configurations will be rapid and more efficient. The Bayesian belief network (BBN)-based modeling framework for design space pruning proposed in this paper attempts to resolve the existing limitation in imparting domain knowledge and provides a pioneering effort to support the designer during the process of application specific system design. The Xtensa customizable processor architecture from Tensilica and a very long instruction word (VLIW) processor architecture are considered as example target platforms to impart the domain knowledge for the proposed model. Case studies in support of the proposed model are presented in order to understand how BBN can be used for design space pruning by propagating the evidence and arriving at probabilistic inferences to ease the decision-making process. The results show that the design space reduces drastically from a few million design options available to just less than one hundred for Xtensa architecture and from a few billions of design options available to just few thousands for VLIW architecture. The work also validates the pruned design points for their optimality.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3