Positive and Negative Feedback for Linearity Improvement and PVT Compensation of the Ramp Generator

Author:

Padash Mohsen1,Yargholi Mostafa1

Affiliation:

1. Microelectronics Research Laboratory, University of Zanjan, Zanjan, Iran

Abstract

Linearity of ramp signals is one of the most important aspects for many applications such as single-slope analog to digital converters (ADCs); another important aspect is the total power dissipation. Applications like high-resolution single-slope ADCs that can be used in portable devices demanded accurate ramp generator with low power dissipation. This paper presents a low power ramp generator with linearity improvement that achieved by a positive feedback circuit and negative feedback for compensation of the variations in process, voltage and temperature. Derived equations of the proposed ramp generator circuit show that linearity of the output ramp, with proper choosing of device sizes, can be enhanced significantly. Also, for proving of linearity enhancement, the circuit design and post-layout simulations were done in TSMC 0.18[Formula: see text][Formula: see text]m and 90[Formula: see text]nm CMOS technologies. Simulation results show that linearity of the circuit improved by a factor of 8 and total ramp resolution improved about 3 bit, whereas power dissipation of the circuit is about 8[Formula: see text][Formula: see text]W and entire layout core area is near 800[Formula: see text][Formula: see text]m2.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Global Ramp Uniformity Correction Method for Super-Large Array CMOS Image Sensors;Chinese Journal of Electronics;2024-03

2. An Opamp-Less PVT Compensation Structure for Ramp Generator Circuit;Journal of Circuits, Systems and Computers;2020-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3