A Low Power and Low Current-Mismatch Charge Pump with Dynamic Current Compensation

Author:

Liu Lianxi12ORCID,Gao Shaopu1,Mu Junchao1,Zhu Zhangming12

Affiliation:

1. School of Microelectronics, Xidian University, 2 Taibai Road, Xi’an City, Shaanxi, P. R. China

2. Shaanxi Key Lab of Integrated Circuits and Systems, 2 Taibai Road, Xi’an City, Shaanxi, P. R. China

Abstract

A novel low power charge pump (CP) that minimizes the mismatch between the charging and the discharging currents is proposed in this paper. The switching circuit with dynamic current compensation is used to reduce the power consumption of the proposed CP. In addition, precise current replication which makes use of the resistors and the low offset operational amplifiers (OTA) can enable a reduction in current mismatch caused by process mismatch. Meanwhile, the high output impedance can reduce the current mismatch caused by the channel length modulation effect. Based on the 0.18[Formula: see text][Formula: see text]m deep-Nwell CMOS process, the proposed CP can reduce the overall power consumption by 56% compared with the CP without current compensation, reduce the current mismatch caused by process mismatch to less than 0.9% and reduce the current mismatch caused by the channel length modulation effect to less than 0.01% over the output voltage ranging from 0.3 to 1.5[Formula: see text]V with 1.8[Formula: see text]V supply.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Shaanxi Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3