Efficient Complex High-Precision Computations on GPUs without Precision Loss

Author:

Cabodi G.1,Garbo A.1,Loiacono C.1,Quer S.1,Francini G.2

Affiliation:

1. Dip. di Automatica ed Informatica, Politecnico di Torino, Torino, Italy

2. Telecom Italia, Joint Open Lab, Torino, Italy

Abstract

General-purpose computing on graphics processing units is the utilization of a graphics processing unit (GPU) to perform computation in applications traditionally handled by the central processing unit. Many attempts have been made to implement well-known algorithms on embedded and mobile GPUs. Unfortunately, these applications are computationally complex and often require high precision arithmetic, whereas embedded and mobile GPUs are designed specifically for graphics, and thus are very restrictive in terms of input/output, precision, programming style and primitives available. This paper studies how to implement efficient and accurate high-precision algorithms on embedded GPUs adopting the OpenGL ES language. We discuss the problems arising during the design phase, and we detail our implementation choices, focusing on the SIFT and ALP key-point detectors. We transform standard, i.e., single (or double) precision floating-point computations, to reduced-precision GPU arithmetic without precision loss. We develop a desktop framework to simulate Gaussian Scale Space transforms on all possible target embedded GPU platforms, and with all possible range and precision arithmetic. We illustrate how to re-engineer standard Gaussian Scale Space computations to mobile multi-core parallel GPUs using the OpenGL ES language. We present experiments on a large set of standard images, proving how efficiency and accuracy can be maintained on different target platforms. To sum up, we present a complete framework to minimize future programming effort, i.e., to easily check, on different embedded platforms, the accuracy and performance of complex algorithms requiring high-precision computations.

Funder

Telecom Italia

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3