Genetic Algorithm-based Reliability Optimization for High-Level Synthesis

Author:

Tosun Suleyman1ORCID,Yaran Tohid Taghizad Gogjeh1

Affiliation:

1. Department of Computer Engineering, Hacettepe University, Beytepe Campus, Ankara 06800, Turkey

Abstract

Soft errors (SEs) are a type of transient errors in integrated circuits (ICs) caused by radiation effects in the chips. They have become the major concern in IC design process in each CMOS technology generation since the decrease in supply voltage levels for shrinking transistor sizes makes the circuits more vulnerable than before. Previous studies generally use hardware redundancy for combinational circuits and error correcting codes for memory elements to mitigate or eliminate the SEs. However, adding extra hardware in final design may not always be possible if the design has tight area constraints. Different implementations of the same function may have different soft error rates (SERs) due to their error masking capabilities. Therefore, we can obtain various versions of the same function with different area, latency, and reliability values. Allocating the best resources to the operations of the design under area and latency constraints to optimize the overall system reliability has NP-complete time complexity. Evolutionary computing-based methods suit very well for this optimization problem. Motivated by this fact, in this paper, we present a genetic algorithm (GA)-based design method to increase the reliability of application-specific integrated circuits (ASICs). In this method, we use different versions of the same resources, each having a different area, latency, and reliability values. The goal of the GA-based optimizer is to allocate the best available resources to the application nodes to maximize the reliability of the design under tight area and latency constraints. Our experimental results show that we achieve up to 20.86% reliability improvement against a heuristic method with no additional area overhead. In order to further increase the reliability of the final design, we also propose a heuristic-based post-processing method, which adds duplicate resources to the final design without violating the constraint.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3