Design of Power, Area and Delay Optimized Direct Digital Synthesizer Using Modified 32-Bit Square Root Carry Select Adder

Author:

Ganna Raju1ORCID,Saxena Shanky2,Patel Govind Singh3

Affiliation:

1. VLSI design SEEE, School of Electronics & Electrical Engineering, Lovely Professional University, Punjab, India

2. VLSI Design, Lovely Professional University, Punjab, India

3. E&TC Department, SITCOE, Yadrav, Kolhapur, Maharashtra, India

Abstract

Improved speed, reduced delay, reduced size and reduced power are the most important requirements of integrated circuits. The carry select adder (CSA) is one of the most important adders in most data processors for performing arithmetic operations. The speed of parallel adders can be enhanced CSA, which widens the area to speed and eliminates propagation delays. The major problem faced in CSA is inefficient area due to the usage of multiple pairs of Ripple carry adders (RCAs) for generating the sums and carry. This research paper proposes the modified 32-bit square root carry select adder (MSCSLA) to improve the direct digital synthesizer’s performance (DDS). DDS plays an effective role in the digital system due to its ability of broad frequency generation. Phase accumulator is the main component in the DDS synthesizer, where the speed of the adder is enhanced through MSCSLA. The general square root CSA still consumes more power due to the assembly of more RCAs. Hence, in the proposed approach, certain sets of RCAs are replaced with BEC1 (Binary to excess 1 convertor) to improve the speed and reduce the delay of the adder. Finally, the continuous sinusoidal waveform is attained by attenuating the high-frequency components by adopting a low pass filter. The entire structure of DDS is designed using Xilinx Verilog coding. The Simulation result shows better outcomes in terms of area, delay, power, and high performance in the DDS synthesizer compared to the existing CSAs. When compared to the existing adders, the area occupied by the proposed MSCSLA model is attained to be 636[Formula: see text][Formula: see text]m2, the power is achieved as 50.125[Formula: see text][Formula: see text]W and delay is attained to be 1.280[Formula: see text]ns, which are comparatively less. When comparing delay and maximum frequency with the existing techniques, the proposed model obtained minimum delay and maximum frequency. The overall power consumption by the proposed model is also attained to be lower than the existing techniques.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3