Sentiment Analysis of Social Network Comment Text Based on LSTM and Bert

Author:

Si Hongying1ORCID,Wei Xianyong2

Affiliation:

1. Department of Mathematics, Shangqiu Normal University, Shangqiu, Henan 476000, P. R. China

2. Shangqiu Polytechnic, Shangqiu, Henan 476000, P. R. China

Abstract

This paper has the aim of solving problems in research studies on the analysis tasks of text emotion; the problems are the low utilization of text, the difficulty of effective information extraction, the failure of recognizing word polysemy with effectiveness. Thus, based on LSTM and Bert, the method of sentiment analysis on text is adopted. To be precise, word embedding of dataset in view of the skip-gram model is used for training course. In each sample, the word embeddings combine matric with the two-dimensional feature to be neural network input. Next, construction of analysis model for text sentiment combines Bert pre-training language model and long short-term memory (LSTM) network, using the word vector pre-trained by Bert instead of that trained in the traditional way to dynamically generate the semantic vector according to the word context. Finally, the semantic representation of words from text is improved by effectively identifying the polysemy of words, and the semantic vector is input into the LSTM to capture the semantic dependencies, thereby enhancing the ability to extract valid information. The Accuracy, Precision, Recall and F-Measure for the method of Bert–LSTM based on analysis of text sentiment are 0.89, 0.9, 0.84 and 0.87, indicating high value than the compared ones. Thus, the proposed method significantly outperforms the comparison methods in text sentiment analysis.

Funder

Key scientific research projects of colleges and universities in Henan Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3