An Adversarial Machine Learning-Based Fast Detection Method for Denial of Service-Oriented Cyber Attacks in Internet of Vehicles

Author:

Wang Mingxu1ORCID,Xu Mingchen1ORCID

Affiliation:

1. College of Automotive and Aeronautical Engineering, Henan Polytechnic Institute, Nanyang, 473000, P. R. China

Abstract

Denial of Service (DoS)-Oriented cyber attack has been a major threat for physical security in many kinds of network media, including the Internet of Vehicles (IoV). This paper focuses on the scenario of IoV, and proposes a machine learning-based fast detection method for adversarial neural network-based fast detection method for DoS-oriented cyber attacks. First, by analyzing the implementation principles and attack characteristics of three attack types, three aspects of statistical features are extracted: maximum matching packet growth rate, source address entropy value, and flow table similarity. Then, they are used as the input features to establish an adversarial machine learning-based DoS cyber attack detection method. On this basis, the field features of six stream rules are extracted, and two DoS cyber attack detection methods via machine learning are formulated. The proposals are able to detect the low-rate DoS-based cyber attacks against the data layer. The experimental results show that the proposed DoS attack detection method based on machine learning can effectively detect three DoS attacks under IoV, and these two algorithms have higher detection rates when compared with other algorithms.

Funder

basic scientific research projects of central universities, Research on network attack oriented forensics technology

Research on recognition technology of refitted vehicles based on artificial intelligence

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3