Schedulability Analysis Towards Arbitrarily Activated Tasks in Mixed-Criticality Systems

Author:

Hu Biao1,Huang Kai2,Chen Gang3,Cheng Long1,Han Dongkun4,Knoll Alois2

Affiliation:

1. Institute of Robotics and Embedded Systems, Technical University Munich, Boltzmannstr. 3, Garching 85748, Germany

2. School of Data and Computer Science, Sun Yat-sen University, Xiaoguwei Island, Panyu District, Guangzhou 510006, China

3. College of Computer Science and Engineering, Northeastern University, Wenhua Road, Heping District, Shenyang 110819, China

4. Department of Aerospace Engineering, University of Michigan, Francois-Xavier Bagnoud Building, 1320 Beal Ave, Ann Arbor, MI 48109, USA

Abstract

The integration of mixed-critical tasks into a platform is an increasingly important trend in the design of real-time systems due to its efficient resource usage. With a growing variety of activation patterns considered in real-time systems, some of them capture arbitrary activation patterns. As a consequence, the existing scheduling approaches in mixed-criticality systems (MCs), which assume the sporadic tasks with implicit deadlines, have sometimes become inapplicable or are ineffective. In this paper, we extend the sporadically activated task model to the arbitrarily activated task model in MCs with the preemptive fixed-task-priority schedule. By using the event arrival curve to model task activations, we present the necessary and sufficient schedulability tests that are based on the well-established results from Real-Time Calculus. We propose to use the busy-window analysis to do the sufficient test because it has been shown to be tighter than the sufficient test of using Real-Time Calculus. According to our experimental results, for sporadic task sets, our proposed test can achieve the same performance as the state-of-the-art schedulability test. However, compared with the previous schedulability analysis of preemptive fixed-task-priority, our approaches can handle more general tasks with blocking, jitter, and arbitrary deadlines.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3