FPGA-Based High-Speed Energy-Efficient 32-Bit Fixed-Point MAC Architecture for DSP Application in IoT Edge Computing

Author:

Nagar Mitul Sudhirkumar1ORCID,Patel Sohan H.1,Engineer Pinalkumar1ORCID

Affiliation:

1. Department of Electronics Engineering, Sardar Vallabhbhai National Institute of Technology, Surat 395007, India

Abstract

Designing high-speed and energy-efficient blocks for image and digital signal processing (DSP) architecture is an evolving research field. This work designs a high-speed and energy-efficient multiply-accumulate (MAC) unit to augment the performance of field-programmable gate array (FPGA)-based accelerators and softcore processors. In this work, three discrete 32-bit fixed-point signed MAC architectures were designed in Verilog and synthesized for the Zynq 7000 ZedBoard to obtain efficient MAC architecture. The ultimate goal of this work is to design a fast and energy-efficient MAC unit that can achieve speed up to the DSP48 block to reduce the latency of IoT edge computing. Energy efficiency was achieved in PPG and partial product addition (PPA) for the proposed Booth radix-4 Dadda (BR4D)-based MAC. At PPG, the width of the partial product (PP) terms was optimized with Bewick’s signed extension to reduce the power consumption. At PPA, the number of PP rows reduces the critical path delay (CPD) with Dadda-based PPA. The proposed BR4D MAC unit offers a reduction in dynamic power, CPD, power-delay product (PDP) and energy-delay product (EDP) by 22%, 9%, 29% and 36%, respectively, compared to standard Booth radix-4 Wallace tree (BR4WT) based MAC. Furthermore, hybrid MACs (BR4WT and BR4D) were compared with the current state-of-the-art (SoA) designs, and it was found that the proposed BR4D MAC is 47% faster compared to the same design in SoA. The proposed BR4D was tested for frequency scaling technique by reducing the frequency in steps of 10 MHz from a maximum usable frequency (MUF) of 64 MHz to 10 MHz to evaluate the performance for low-power applications. Reducing clock frequency by 84% will reduce the power consumption at the same proportion and speed by 38%. Additionally, the proposed design helps to improve the battery life of IoT end nodes with a reduction in energy consumption and EDP by 76% and 61%, respectively.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3