Design of ACS Architecture Using FinFET and CNTFET Devices for Low-Power Viterbi Decoder Using Asynchronous Techniques for Digital Communication Systems

Author:

Bernard Rayappa A1,Sundararajan TVP2

Affiliation:

1. KPR Institute of Engineering and Technology, Coimbatore, India

2. Sri Shakthi Institute of Engineering and Technology, Coimbatore, India

Abstract

Viterbi algorithm is the most popular algorithm used to decode the convolution code, but its computational complexity increases exponentially with the increasing constraint length due to a large number of Trellis transitions. However, high constraint length is necessary to improve the accuracy of the decoding process for the high rate convolution code. In particular, the Add-Compare-Select (ACS) module of the Viterbi Decoder will have large numbers of trellis states and trellis transitions with increased constraint lengths, which give rise to high hardware complexity and large power consumption. As the performance of the Viterbi decoder mainly depends on its efficient implementation of the ACS module, in the literature, several methods are presented for the implementation of ACS for the Viterbi decoder. The methods based on Precharge Half Buffer (PCHB) and Weak Conditioned Half Buffer, Shannon’s decomposition circuits, body-biased pseudo-NMOS logic and Quasi Delay Insensitive (QDI) timing model performance is analyzed. The methods are implemented using CMOS technology. In this paper, FinFET and CNTFET-based ACS implementation is performed. From the analysis, it has been found that the Carbon Nanotube-based implementation is better in performance when compared to the CMOS and FinFET technology. The proposed QDI model and retiming circuits for ACS block operate above 1[Formula: see text]GHz with high driving current and low power.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3