Intelligent Edge Based Efficient Disease Diagnosis Using Optimization Based Deep Maxout Network

Author:

Ancy Breen W1ORCID,Muthu Vijaya Pandian S2

Affiliation:

1. Information and Communication, Research Scholar, Anna University, Chennai 600053, Tamilnadu, India

2. Department of Electrical and Electronics Engineering, SNS College of Technology, Coimbatore 641042, Tamilnadu, India

Abstract

The healthcare model is considered an imperative part of remote sensing of health. Finding the disease requires constant monitoring of patients’ health and the detection of diseases. In order to diagnose the disease utilizing an edge computing platform, this study develops a method called grey wolf invasive weed optimization-deep maxout network (GWIWO-DMN). The proposed GWIWO, which is developed by integrating invasive weed optimization (IWO) and grey wolf optimization (GWO), is used here to train the DMN. The distributed edge computing platform consists of four units, namely monitoring devices, first layer edge server, second layer edge server, and cloud server. The monitoring devices are used for accumulating patient information. The preprocessing and feature selection are performed in the first layer edge server. Here, the preprocessing is carried out using the exponential kernel function. The selection of features is done using Jaro–Winkler distance in the first layer edge server. Then, at the second layer edge server, clustering and classification are carried out using deep fuzzy clustering and DMN, respectively. The proposed GWIWO algorithm is used to do the DMN training. Finally, the cloud server processes the decision fusion. The proposed GWIWO-DMN outperformed with the highest true positive rate (TPR) of 89.2%, highest true negative rate (TNR) of 93.7%, and highest accuracy of 90.9%.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3