Affiliation:
1. Information and Communication, Research Scholar, Anna University, Chennai 600053, Tamilnadu, India
2. Department of Electrical and Electronics Engineering, SNS College of Technology, Coimbatore 641042, Tamilnadu, India
Abstract
The healthcare model is considered an imperative part of remote sensing of health. Finding the disease requires constant monitoring of patients’ health and the detection of diseases. In order to diagnose the disease utilizing an edge computing platform, this study develops a method called grey wolf invasive weed optimization-deep maxout network (GWIWO-DMN). The proposed GWIWO, which is developed by integrating invasive weed optimization (IWO) and grey wolf optimization (GWO), is used here to train the DMN. The distributed edge computing platform consists of four units, namely monitoring devices, first layer edge server, second layer edge server, and cloud server. The monitoring devices are used for accumulating patient information. The preprocessing and feature selection are performed in the first layer edge server. Here, the preprocessing is carried out using the exponential kernel function. The selection of features is done using Jaro–Winkler distance in the first layer edge server. Then, at the second layer edge server, clustering and classification are carried out using deep fuzzy clustering and DMN, respectively. The proposed GWIWO algorithm is used to do the DMN training. Finally, the cloud server processes the decision fusion. The proposed GWIWO-DMN outperformed with the highest true positive rate (TPR) of 89.2%, highest true negative rate (TNR) of 93.7%, and highest accuracy of 90.9%.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture