Soft Computing Technique-Based Voltage/Frequency Controller for a Self-Excited Induction Generator-Based Microgrid

Author:

Jain Monika1,Gupta Sushma1,Masand Deepika2,Agnihotri Gayatri1

Affiliation:

1. Electrical Engineering Department, MANIT, Bhopal, Madhya Pradesh, India

2. Electrical & Electronics Department, OIST, Bhopal, Madhya Pradesh, India

Abstract

Microgrids (MGs) are small scale energy unit networks that can offer an adequate energy supply to cover local demand by incorporating renewable energy and storage technologies. The system capacity is generally between several kW to several MW. They work in terms of low voltage (LV) level or medium voltage (MV) level. They can also be connected/disconnected from main grid whenever it is necessary. This paper presents a comparison of two soft computing (SC) techniques fuzzy logic (FL)/artificial neural network (ANN) over a conventional proportional integral (PI)-based voltage frequency controllers used for improving the performance of MG under islanding mode. Microgrid is formed by using three 7.5[Formula: see text]kW, four pole, 50[Formula: see text]Hz, self-excited induction generators (SEIGs) driven by small hydro turbine feeding three-phase four-wire consumer load. The proposed topology functions excellently in maintaining phase angle, voltage and frequency (VF) regulation of the micro sources (MSs) in islanded mode as well as in resynchronization when one of the MSs is turned off due to fault or unavailability of resources. The conventional PI controller is replaced by a controller based on SC techniques, as it has disadvantages like explicit description of mathematical model, affected by variations in consumer loads and sources, thus the proposed SC techniques enhance the performance of VF controller. A comparative analysis of PI/FL/ANN controller is also carried out to highlight the superiority of AI controller. The performance of controller with proposed configuration is verified for balanced/unbalanced non-linear load. Microgrid and control schemes are simulated in MATLAB Sim Power Systems environment.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3